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H-Theorem for the Hard-Sphere Gas 
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The approach to equilibrium of the hard-sphere gas is discussed from the 
master-equation point of view. An H-theorem is established, which is valid 
for arbitrary initial conditions. 
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1. I N T R O D U C T I O N  

The demonstration of an approach to equilibrium and an H-theorem for large 
dynamical systems has remained an open problem since Boltzmann's work. 
It has proved very difficult to extend Boltzmann's ideas beyond the case of  a 
dilute gas. Moreover, serious difficulties arise at the conceptual level: Even 
for a dilute gas, Boltzmann's statistical definition of entropy applies only to 
certain initial conditions and a particular form of  the collision operator31'2) 
Recent computer as well as spin echo experiments in dipolar coupled systems 
illustrate clearly the difficulties in Boltzrnann's derivation. Indeed, they 
display situations for which a kinetic equation of the Boltzmann type is not 
valid. 

Recently, a reformulation of statistical mechanics has been developed 
by Prigogine et alJ ~-~) They have shown the way to construct a more general 
microscopic model of entropy, which displays the expected monotonic 
approach to equilibrium even in non-Boltzmann situations, such as experi- 
ments involving "negative time evolution." More precisely, they have 
pointed out that if we expect the second law of thermodynamics to be valid 
whatever the initial state of the system, entropy has obviously to depend in 
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general on all dynamical variables of the problem. ~1~ It is only in special 
cases, such as near local equilibrium conditions, that entropy may be ex- 
pressed in terms of reduced distribution functions or even in terms of macro- 
scopic quantities alone as in thermodynamics3 5'6~ 

Let us summarize briefly some aspects of the principle of symmetry 
breaking as a dissipativity condition51'5~ Take the Liouville equation 

(a/~t)p = - iLp  (1) 

for the distribution function. If  - L  is substituted for L and - t  for t, the 
equation remains unchanged. Thus it is " 'Lt"  invariant. On the contrary, 
kinetic equations derived from Eq. (1), such as the Boltzmann equation, are 
not " L t "  invariant. The origin of this symmetry breaking is due to an 
explicit consideration of causality, which leads, for a system for which the 
operator L has a continuous spectrum, to the need for analytical continuation 
of the resolvent (L - z)- 1 associated with Eq. (1). The analytical continuation 
leads in turn to the appearance of even terms in L in the evolution equations. 
These even terms (I)e break the " L t "  symmetry and play a central role in the 
so-called dissipativity condition given by ~ r 0. It is the clarification of this 
mechanism that is the distinctive feature of this approach. 

The object of this paper is to study a model of a gas of hard spheres in 
the light of this theory. In a previous paper C7> we established an H-theorem 
for the Enskog kinetic equation. The validity of this theorem is shown to be 
limited to the range of linear thermodynamics of irreversible processes. For 
far-from-equilibrium states we have demonstrated the impossibility of 
expressing an H-theorem in terms of reduced distribution functions. 

We know from the work of Enskog the importance of this model. <a> He 
was the first to predict the density dependence of the transport properties of 
a dense gas from his kinetic equation, which has the form 

~ f +  v l . ~ - ~ f  = 0 2 dr2 dk  g12.k 

• [r(rl + �89 + ok) 

- Y(rl -- �89 - ok)] (2) 

where f ( r t ) - - - f (v l ,  r~; t); f ( h  + ok)---f(v2, r~ + crk; t) is the one-particle 
distribution function; andf'(r~) = f(v~', r~; t), with vl' denoting the velocities 
of the two molecules before collision. The diameter of the molecules is o and 
g12 = v2 - v~ is the relative velocity; k is the unit vector along the apse line 
joining the centers of the two molecules at the instant of contact. The factor 
Y expresses the increase in the probability of a collision, and has the value 
of the equilibrium radial distribution function at the position of impact in a 
molecular collision, c~'t~ Despite its simplicity, transport properties obtained 
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from Enskog's equation compare favorably with those derived from the more 
rigorously based equation of  Choh and Uhlenbeck. ~1~'~ 

The approach to equilibrium of  the hard-sphere model described by the 
Enskog equation remains an open problem, and no H-theorem, one of the 
great  successes of the Boltzmann equation, has been established to our 
knowledge beyond the linear range of irreversible processes. (7) 

In Section 2, following a similar procedure as that employed by Kac to 
derive the Boltzmann equation, ~3) we propose a master equation, which for 
a classical system of  hard spheres generates the Enskog equation. ~1~ Then 
we show how the symmetry breaking as a dissipative condition is displayed. 
A generalized H-theorem valid for the complete system is established in 
Section 3, whatever the initial state of the system. In the conclusions (Section 
4), we discuss the Boltzmann form of the/-/-theorem. We show the necessity 
of  a more general definition of  entropy out of equilibrium for more complex 
systems than dilute gases. 

2. MASTER EQUATION FOR THE H A R D - S P H E R E  GAS 

Consider an assembly of N identical particles as hard spheres of diameter 
enclosed in a volume v. The evolution of  such a system is mainly governed 

by the dynamics of  binary elastic collisions/1~) A kinetic equation of this 
system [cf. Eq. (2)] has been derived by Enskog using intuitive arguments. 
The Enskog theory can also be approached by studying an appropriate master 
equation. 

Denote by V = v N = vx, v2 .... , vN the velocities of the N molecules and 
by R = #r their positions and combine them into a 6N-dimensional master 
vector 

(R, V) = (vl, rl; v2, r2 ;... ; vN, rn) (3) 

Consider now the process in which a collision occurs between the ith and 
j th  particles (i < j) .  Let the direction from the center of i to j be k. Then V 
changes into A~s(k)V, where 

A,,OOV = (vl ..... v, + (vj - v3.kk,..., vj - (vj - v,).kk ..... vN) (4) 

More generally, the action of  the operator A~j(k) on a function F(V) is 
such that 

A,Ak)F(V) = F(.4,j(k)V) (5) 

The analysis of  the binary collision expansion of  such a model has been 
made by Ernst et aL ~14~ and they have obtained a pseudo-Liouville equation. 
We will recover their result using a master equation approach. In effect for a 
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gas at ordinary pressure a master equation approach to Boltzmann's theory 
for a monatomic and spatially homogeneous gas has been given by Kac. <13> 
The probability per unit time of a collision such that particles i and j lie in a 
volume dr, drj and their velocities lie in a range dr, dvj and k lies in dk is 
assumed to be of the form qJ, j. At time t --- 0, we start with a distribution of 
N molecules given by the density p(V, 0) and the distribution will evolve in 
time according to the equation 

8~ p(V; t) = dk ~bij[p(A,j(k)V; t) - p(V; t)] (6) 

This equation requires correction when the gas is dense. Indeed, for a dilute 
gas the mean free path of a molecule is large compared to the molecular 
dimensions. However, this ratio is much reduced if the gas is dense. Conse- 
quently, an additional mechanism to the collision process, describing transfer 
of momentum and energy over the distance separating the centers of the two 
colliding molecules, becomes important. To take this effect into account we 
have to specify the position of the colliding particles. If  the particle i is at r~, 
the particle j must be at rj = r~ - ~k, where k is the direction of the centers 
of the particles (i, j )  which will collide at r~ - �89 Thus on the right-hand 
side of Eq. (6) this effect will appear by the introduction of a function 
8(r~j + crk) associated with p(V, R; t); 8(r) is a three-dimensional Dirac 
8-function. In the inverse collision process the center of the molecule i lies in 
a volume dr~ and the velocities of the two molecules after collision lie in the 
range dv~ dv s while the direction of the line of centers is - k ,  where k lies in 
dk, so as above, p(A~.(k)V, R; t) in Eq. (6) must be replaced by 8(r~j - ek) x 
p(A~j(k)V, R; t). In such a collision the center of the second molecule is at 
rj = r~ + ak, while the two molecules actually touch at r~ + �89 

In these collisions a2 dk denotes a surface element on the sphere, or 
radius cr and center i, on which j must lie at the collision. Hence for a gas at 
ordinary pressure the probability per unit time of a collision such that i lies 
in a volume dry, the velocities of the two molecules lie in range dv~ dvj, and k 
lies in dk can be given in a more explicit form, which is actually the same as 
in the Enskog equation (2). Thus the master equation for a nonuniform 
dense gas is 

8~ p(V, R; t) + V.~--~ p(V, R; t) 

= ~2 t ~  f dk g,,.k[8(r, s - ek)A,,(k) - 8(r,j + crk)]p(V, R; t) (7) 

with g~j = vj - v~ the relative velocity. 
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Introducing the collision operator O defined by 

O = a 2 ~ f dk g,j.k[A=j(k) 3(rt s - ~k) - 3(rf i + ok)] (8) 
t < j  

we may write Eq. (7) as 

p(V, R; t) + V.~--R p(V, R; t) = Op(V, R; t) (9) 

To derive from the master equation, Eq. (7), the Enskog kinetic equation 
we have to make some assumptions, as Enskog does in his theory for dense 
gases. In equilibrium the pair-distribution function f o is related to the one- 
particle distribution func t ion f  ~ by 

A~ v2, r l ,  r2 = rl + ok) = r(ok)f0(vl ,  rl)f~ rl + ok) (10) 

where Y(ok) is the equilibrium radial distribution function at a separation ok. 
This equilibrium radial distribution function is independent of  the velocities 
and depends only on the relative distance 1r12[ = cr at a collision. We assume, 
as Enskog did, that this relationship is valid even when the system is not in 
equilibrium (9,~o): 

f2(vl, v2, ri ,  r2 = rl + ok; t) = Y(o; n(Rlz))f(vz, rl; t) (11) 

where Y(a; n(R~2)) is now the equilibrium value of the pair distribution 
function for 1r121 = o, evaluated as a function of the local density n(r) at 
position R~2 = �89 + r2) of contact between the two colliding spheres. 

3. GENERALIZED H - T H E O R E M  

To study the approach to equilibrium of a system of hard spheres, the 
evolution of  which is described by the master equation (9), it will be con- 
venient to decompose the collision operator O into two new operators. We 
define through inversion of  the velocities an operator symmetric in velocities, 
which we denote by 0 s, and another O a antisymmetric in the velocities. They 
are such that O =- 0 s + 0 A and explicitly take the form 

fg dk gt~.k[A~j(k) - 1] 3(rij - ok) 0 s = �89 ~ ~<~ 
i j . k>  0 

f~ d k g ,  j .k[A,j(k)  - 1] 3(r~j + ok) (12) 
+ �89176 ,rk>0 

and 

O a =  �89 ~ j  fg dk  g,,.k[A,,(k) + 1] 8 ( r , , -  ok) 
t].k > 0 

- �89 ~ f .  dk g,,.k[A,,(k) + 1] 3(r,, + ok] 
t tk > 0 

(13) 
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The master equation (9) is then written in the form 

0 
0t p(V, R; t) + u p(u R; t) = (0 s + OA)p(V, R; t) (14) 

In the following g~j.k will be assumed to be > 0, unless otherwise stated. 
It has been established and recently demonstrated on different 

models (1'15'16) that the general evolution of dynamical dissipative systems 
may be characterized in terms of a Liapunov function ~, namely 

: H av aR/(v, R; ,) (15) 

Then from the evolution equation (14) we obtain 

1 ~ f2 = - dV dR p(V, R; t)V.~--R p(V, R; t) 
2 Ot 

f f  dV dR p(V, R; t)(O~ + OA)p(V, R; + t) (16) 

Consider first the contribution of the symmetric collision operator 0 s 
which is given by 

f f dV dR p(V, R; t)OSp(V, R; t) 

x [p(Au(k)V , r~j = r t) - p(V, r~j = ok; t)] 

+ �89 ~ f f dV drN-i dk g,,.kv(V,r,, = -,~k; t) 

x [ p ( A ~ j ( k ) V ,  r~j = - o k ;  t)  - p(V, r~s = - , ~ k ;  t)]  (17) 

But the operator Aij(k) is orthogonal acting on the velocity space V; 
hence we have the following relation: 

f f dV drN-Z dk g,,.kp2(A,jO~)V, r,j = a k ; t )  

f f  dV dr t~-~ g,,.kp2(V, r,, = - o k ;  t) (18) 
t < l  d J  
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Introducing this relation into Eq. (17), we obtain 

.I.I dV dR p(V, R; t)Osp(V, R; t) 

=-�88 

x [p(X,j(k)V, r~ s = ok; t) - p(V, r~j = ok; t)] 2 

- �88 ~ f f  dV dr~-l dkg,j.k 

x [p(A~j(k)V, r~j = - o k ;  t) - p(V, rtj = - o k ;  0]  2 

and hence 

(19) 

f f  dV dR R; t)OSp(V, R; < 0 (20) p(V, t) 

If  we consider a gas at rest in a smooth vessel, the first term on the 
right-hand side of  Eq. (16) gives no contribution. In effect the components 
of the velocity of the particules along the normal of  any element dS of the 
surface of the vessel are exactly reversed, since the vessel is smooth. The 
contributions at the point of  contact of  the hard spheres will be eliminated 
in the same manner as for the third contribution, which is given below. 

The third contribution on the right-hand side of  Eq. (16), that is, of the 
antisymmetric part O A of the collision operator, is 

_(( dV dR pCr R; t)O'~(V, R; t) 

t < j  

x [p(Aij(k)V, ru = ak; t) + p(V, r~ t = ak; t)] 

t < t  J d  

x [p(AiXk)V, r~j = - o k ;  t) + p(V, ro. -- - o k ;  t)] (21) 

Considering the inverse collision, this expression is simplified to 

.f.I dV dR p(V, R; t)Oap(V, R; t) 

= f f  a v  g,j'kp2(V, r,j = ok; t) 

- � 8 9  f f  dV dr ~-1 dk gu-kp2(V, ro = - o k ;  t) 
f < j  

= �89 f f  dV dr •-z dk  g,~..kp2(V, rfj = ok;  t)  (22) 

0 ~< g~j-k ~< 0 
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On transformation by Green's theorem, this is equal to 

dV dr ~ g'J'~'~u P2(V' rN; t) (23) 

with [r~j[ >I ~. The coordinates are transformed to relative and center-of-mass 
coordinates by means of the relations 

r~ s = rj - r~; R u = �89 + rj); gu = vj - v~; G~j = �89 + vj) (24) 

Then, after introduction of the relations (24), the expression (23) becomes 

1 ~<jffdv~-2dG,,dgudR,,dr,,.g,,.~--~j. O2(v N-2, G,j, g,,, R,j, r,j; t) 

~*a O~gtl.k<~O 

x p~(v N-2, G~i, gu, R~j, r u = crk; t) (25) 

0 ~< g,j-k ~< 0 

Since the collisions are elastic near the element a2 dk of surface, the k com- 
ponents of relative velocity g,j.k of the particles i and j are exactly reversed 
whatever the center-of-mass velocity G,~ and their orthogonal components 
to k, g,jl, are unaltered. Hence we have directly 

f f  dV dR p(V, R; t)OAp(V, R; t) = 0 (26) 

Thus, taking into account the property of Eq. (19) of the symmetric 
operator O S, we get 

(O[Ot)~ <. 0 (27) 

To establish a connection between the above dynamical formulation and 
thermodynamics, one needs to find a functional of p(V, R; t) which has all 
the properties of the thermodynamic entropy. In fact, for the stochastic-type 
model considered here, we have two candidates for an H-functional/1,10) 

The generalized H-functional which has been proposed for Markovian 
or non-Markovian processes leads, for requirement of additivity for inde- 
pendent systems, to the definition 

H - Ho. = �89 ln(~/~ . . )  (28) 

where the index " e q "  indicates the equilibrium value of the quantity. The 
numerical factor is chosen in such a way as to recover the results of linear 
nonequilibrium thermodynamics. We obtain directly from Eq. (27) the result 

(O/bt)H = �89 < 0 (29) 
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whatever the initial conditions. The system is driven to the equilibrium state 
for which the functional H reaches its minimum value. In this state we get 
from Eq. (19) that the distribution function will satisfy the conditions 

p(A,j(k)V, rij = ~k; t) = p(V, r~s = crk; t) Vi, j (30) 

]?or a hard-sphere gas the equilibrium distribution function can be 
written as (exp(-/3Ho}W, where H0 is the kinetic part of the Hamiltonian, 
and W = /-I~j W(lr~jl = ~) is a product of step functions that are equal to 
one for nonoverlapping configurations and vanish for overlapping ones. 

4. D I S C U S S I O N  A N D  C O N C L U D I N G  R E M A R K S  

In this simple model there are other Liapunov functions that could be 
used as well for the statistical definition for the entropy. Indeed it has been 
pointed out that this seems to be a general property of  Markov processes. 
In particular, we can use instead of (28) 

HB = f dV dR p log p (31) 

The decrease in time of the HB-functional defined in Eq. (31) is directly 
obtained from the alternative expressions given in the appendix. They look 
like the manipulations of the Boltzmann collision operator for such a 
problem. It will be shown in a similar manner as in Section 3 that the anti- 
symmetric operator gives no contribution, recalling that 

p(A~s(k)V , r~j = crk; t) = p(G, g'ij'k, g~Ji, r~j = crk; t) 

= p(G, -g~j.k,  g~s• r~s = ok; t) (32) 

The equilibrium conditions obtained from the decrease of HB are the same 
as in the study of the evolution of the generalized H-theorem. 

The HB quantity defined in Eq. (31) is obviously related to the fact that 
with the molecular chaos assumption, this expression leads to the Boltzmann 
functional for the one-particle distribution function. But as it has been 
discussed by Prigogine and Henin, the molecular chaos assumption is very 
restrictive. <15) It corresponds to a very particular preparation of  the system. 
Then even if one can derive an H-theorem from Eq. (31) under this rather 
strong condition, one should not expect it to be valid in more complex 
systems than dilute gases or weakly coupled systems, c1~) 

As we know, the fundamental problem of the theory of  irreversibility is 
to describe the mechanism by which a dynamic system is driven to equilib- 
rium. This includes the evolution of  all reduced distribution functions and all 
correlations. Therefore a description in terms of the one-particle distribution 
function will in general not be possible, as we have shown in Ref. 3. The 
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results obtained demonstrate the necessity of a general definition of entropy 
in terms of the N-particle distribution function when one wants to describe 
the approach to equilibrium, whatever the initial conditions, in systems more 
complex than dilute gases315> 

APPENDIX 

Consider the molecular property ~(V, R; t) and the integral expression 

= �89 2 ~ f f  dV dR dk g~j.k~0(V, R; t)p(A,j(k)V, R; t ) 8 ( r , j -  ok) (A.1) A 

Because of the dynamical reversibility, this expression evaluated for direct 
encounters specified by (v~, vj, k) is equivalent to a summation over all 
possible inverse encounters specified by (v~', vs', -k ) .  Hence the integral given 
by Eq. (A.1) becomes equal to [given that A~j(k)(v~, vj) = (v(, v/)] 

A =-�89 
x p(V, R; t) 8(r~j + ak), -g[ j .k  > 0 (A.2) 

But we know from the dynamics of a binary encounter that g~j.k = -g[j .k.  
Then Eq. (A.2) is written as 

A = �89 ~<j f f dV dR dk g,j.k~o(A~j~x)V, R; t)p(V, R; t) 8(r~s + crk) (A.3) 

Using the same arguments, the following quantity, denoted by B, is trans- 
formed in a straightforward manner into 

B = �89 2 i~ f f  dV dR dk g,s'kg(V, a ;  t)p(V, R; t) 8(r,j - crk) 

= �89 f f  dV dR dk g,j.kg(A,j,k,V, R; t) 

x p(A,r R; t) 8(r,j - ok) (A.4) 

Consider now the expression 

f f d V  dR dk g,j.k~0(V, R; t)[A.(k) - l]p(V, R; t) 8(r,j - ~k) (A.5) y 
l < y  , , / d  

From the alternative expressions of A and B given by (A.3) and (A.4) we 
have immediately a new form of (A.5) in terms of ~0(A~j(k)V, R; t), that is, 

- �89 2 ~ f f  dV dR dk g,,.kq~(A,,(k)V, R; t)[A,,(k) - 1] 
i i~.  J d d  

x p(V, R; t) 8(r,j + ok) (A.6) 
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The  equivalence of  (A. 5) and  (A.6) with the similar ones obta ined by  changing 
k to - k  gives an interesting expression for  the collisional integral. We obtain  
f rom the symmetr ic  pa r t  o f  the collision opera to r  

= �89 ~ [ [  dV d R  d k  g,s.k[~(V, R;  t) - ~o(A,j(k)V, R;  t)] 
d d  

x [A,j(k) - l ip(V, R;  t)  8(r,j - ak) 

+ �89 ~<~ f f  d V  dR  dk  g, , .k[r  R;  t)  - ~(A,j(k)V, R;  t)] 

x [A,j(k) - lIp(V, R;  t) 8(r,y + ak) (A.7) 
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